
Journal of Statistical Physics, Vol. 118, Nos. 3/4, February 2005 (© 2005)
DOI: 10.1007/s10955-004-8828-y

Sine-Gordon/Coulomb Gas Soliton Correlation
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We present an exact derivation for the asymptotic large distance behavior of
the spin two-point correlation function in the XY-model. This allows for the
exact obtainment of the critical exponent η = 1/4 at the Kosterlitz–Thouless
transition that occurs in this model and in the 2D neutral Coulomb gas and
which has been previously obtained by scaling arguments. In order to do that,
we use the language of sine-Gordon theory to obtain a Coulomb Gas descrip-
tion of the XY-model spin correlation function, which becomes identified with
the soliton correlator of that theory. Using a representation in terms of bipo-
lar coordinates we obtain an exact expression for the asymptotic large dis-
tance behavior of the relevant correlator at β2 = 8π , which corresponds to the
Kosterlitz–Thouless transition. The result is obtained by approaching this point
from the plasma (high-temperature) phase of the gas. The vortex correlator of
the XY-model is also obtained using the same procedure.

KEY WORDS: Soliton correlation functions; sine-Gordon theory; XY-model;
2D Coulomb gas; Kosterlitz–Thouless transition.

1. INTRODUCTION

The sine-Gordon (SG) model is certainly one of the best studied of (1 +
1)-dimensional physics. The interest in this field theoretical model has been
enhanced by its connections with the two-dimensional (2D) neutral Cou-
lomb gas (CG)(1) and also with the 2D XY-magnetic system.(2) In this
framework, it becomes an useful and powerful tool for the study of a
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great variety of physical properties of these two systems, which in princi-
ple admit actual realizations in nature. The SG model is integrable in the
sense that the spectrum and the S-matrix are exactly known.(3) Neverthe-
less, there is a lack of exact results for correlation functions, except for a
specific value of the coupling parameter.(4)

Many interesting results have been obtained recently, concerning the
SG system. The thermodynamic Bethe ansatz has been used for obtaining
the free energy and specific heat of the system.(5) Exact form factors of
the soliton operators and other fields have been derived.(6,7) Density cor-
relation functions have been calculated using these form factors.(8) Several
results concerning the thermodynamics of the classical CG have also been
obtained.(9) Among these, we mention the exact free energy for β2 <4π , in
the case of point particles(10) and for 4π <β2 < 6π , in the case of exten-
sive ones.(11) Charge and particle correlators have been obtained in the low
temperature (β2 >8π ) phase.(12)

In this work we present a computation of the two-point spin corre-
lation function of the XY-model using its connection to the SG theory.
In particular, we exploit the relation existing between the spin operators
of the former and the soliton creation operators of the latter. Then, we
use the CG representation of these functions in order to derive an exact
series describing the large distance behavior of them. This series clearly
exhibits two distinct types of asymptotic behavior, separated by a critical
point at β2 = 8π . At this point, we obtain an exact result for the spin–
spin correlator of the XY-model, which exhibits a power-law behavior with
exponent η= 1

4 , well-known from the scaling analysis of the XY-model.(2)

This special point, indeed, is the Kosterlitz–Thouless (KT) critical point(13)

and, in the 2D CG language, it corresponds to the temperature Tc in
which the system undergoes a phase transition from a metallic (or plasma)
phase, composed of charged particles, into an insulating (or dielectric)
phase, composed of neutral dipoles (bound pairs of charges). For β2 <8π

(high-temperature), our series exhibits a nontrivial large distance behavior,
whereas for β2 >8π (low-temperature), its large distance behavior is deter-
mined by the free theory, as expected.

The KT critical exponent is usually obtained through scaling argu-
ments, which are approximate, in the low-temperature phase(2,14–16) or by
heuristic arguments in the high-temperature phase.(17) The result presented
here is the first exact evaluation of the KT critical exponent, performed by
approaching the critical point from the high-temperature (in CG language)
phase.

In Section 2, we review the connection between the SG theory
with the 2D CG and also with the magnetic XY-model. We pay special
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attention to the correspondence between the soliton creation operators in
the SG theory and the spin operators in the 2D XY-model. This allows
us to establish the equivalence between their respective correlation func-
tions, which can be written in a convenient form with the help of the 2D
CG picture. In Section 3, we make use of bipolar coordinates in order to
put the correlation functions in a form that easily allows for the obtain-
ment of an exact asymptotic solution at the KT critical point. In Sec-
tion 4, we consider the case of the vortex correlation function. Finally,
some concluding remarks are presented in Section 5. Two appendices are
included. In Appendix A, we review the details of the system of bipolar
coordinates employed in the calculations, whereas in Appendix B, we dem-
onstrate properties of the functions K (|�x − �y|) and K ′ (|�x − �y|) appearing
in our final expressions for the soliton and the vortex correlation func-
tions, respectively, which are used in obtaining the asymptotic behavior of
these correlators.

2. SOLITON AND SPIN OPERATORS

In this section, we are going to review the connection of the SG
theory with the 2D neutral CG and with the 2D XY-model. We will high-
light, in particular, the relation of the soliton creation operator of that
theory with the spin operator of the latter model, as well as the represen-
tation of its correlation functions in the framework of the classical CG.
This will be our starting point for the evaluation of correlation functions
at the KT point.

We start from the SG euclidean action, given by

S =
∫

dxdτ

[
1
2
∂µφ∂µφ +2α0 cosβφ

]
. (1)

It is well-known that the vacuum functional of the theory may be written
as(1,15)

Z = lim
ε→0

∞∑
n=0

α2n

(n!)2

∫ 2n∏
i=1

d2zi exp




β2

8π

2n∑
i �=j=1

λiλj ln
[
|�zi −�zj |2 + ε2

]
 , (2)

where λi = 1 for 1� i �n and λi =−1 for n+ 1� i �2n and ε is a short-
distance regulator, which is needed in the case of point particles or, equiv-
alently, of a local field theory. The renormalized coupling α is related to
the one in (1) by

α =α0(ε
2)

β2
8π . (3)
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In expression (2) we recognize Z as the grand-partition function for the
classical 2D CG of point particles with charges ±1, where α is the fugacity
and β2

2π
= 1

kTCG
, where TCG is the CG temperature. In obtaining this rela-

tion, we are using the convention(18) for defining the 2D Coulomb poten-
tial. In the case of particles with a finite diameter, d, the integration region
for the 2n zi-integrals in (2) must exclude the regions where |�zi −�zj |<d.

The theory possesses soliton excitations, bearing a topological charge

Q= β

2π

∫
dx ∂xφ. (4)

At the quantum level, the corresponding states are created by the soliton
operator of Mandelstam(19)

µ(x, τ)= exp
{
i

2π

β

∫ x

−∞
dz φ̇(z, τ )

}
. (5)

As we will see below, this operator has an interesting physical interpreta-
tion in terms of the associated spin system, namely, the XY-model.

The exact soliton mass spectrum is known, as well as the masses of
soliton bound states (breathers), which occur for β2 <4π .(3) Their masses
are given by

Mn =2M sin
(

πξ

2
n

)
, n=1,2, . . .<

1
ξ
, (6)

where ξ = β2

8π−β2 and M is the soliton mass.
The SG/CG system is closely related to a 2D spin system, namely the

O(2) ferromagnetic Heisenberg model on a square lattice, or XY-model.(2)

This is described by the hamiltonian

HXY =−J
∑
〈ij〉

�ni · �nj , (7)

where(2,20)

�ni =
(

cos

√
T

2J
θi , sin

√
T

2J
θi

)
. (8)

The sum in (7) runs over nearest neighbors and T is the temperature (note
that the temperature in the XY-model, T , is not the same as in the CG,
TCG). Observe that |�ni |2 =1 and θi is proportional to the angle the spin �ni

makes with the x-axis.
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When we take the continuum limit of (7) and consider the contribu-
tions of both spin-waves and vortices to the total energy, we arrive at the
hamiltonian(2)

HXY =
∫

d2x

[
1
2

�∇θ · �∇θ +κ cos

(
2π

√
2J

T
φ

)]
, (9)

where we have considered that θi → θ(�x) in the continuum limit and φ is
a scalar field related to θ(�x) by

θ(x, y)=
∫ x

−∞
dz ∂yφ(z, y). (10)

From (10), it follows that

�∇θ · �∇θ = �∇φ · �∇φ (11)

and we see, by comparing (9) with (1), that the hamiltonian of the
XY-model coincides with the euclidean action of the SG model, provided

we make the identifications: β = 2π

√
2J
T

and κ = 2α0. It also follows that
the euclidean vacuum functional of the SG theory, the grand-partition
function of the 2D CG and the partition function of the XY-model are
all identified.

In the XY-model, similarly to the case of the CG of extensive par-
ticles, we have a natural short distance cutoff, namely, the lattice spacing
τ .(2) Accordingly, the integration region for the 2n zi-integrals in (2) must
exclude, in this case, the regions where |�zi −�zj |<τ .

Within this picture, a very interesting and useful connection can be
established between the XY-spin thermal correlation functions and the SG
quantum soliton correlators. Indeed, in view of (10) we see that the SG
soliton operator (5) can be written as

µ(x, τ)= exp
{
i

2π

β
θ(x, τ )

}
. (12)

The relevant XY-correlator, therefore, may be written as

〈�n(�r) · �n(�0)〉XY =〈µ(�r)µ†(�0)〉SG, (13)

where the first expression is the XY-thermal correlator, whereas the second
one is the SG quantum soliton correlator.

Within the CG description, the soliton correlator (13) is given by:(15)
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〈µ(�x)µ†(�y)〉 = Z−1

|�x − �y|
2π

β2

∞∑
n=0

α2n

(n!)2

∫
V (r)

2n∏
i=1

d2zi

× exp
{

β2

8π

2n∑
i �=j=1

λiλj ln |�zi −�zj |2

+i

2n∑
i=1

λi [arg(�zi − �y)−arg(�zi − �x)]
}
, (14)

where Z−1 is given by (2). In the previous expression, we are considering
either the case of the XY-model or the CG of extensive particles, where, as
we have mentioned, there is a natural short distance cutoff. Consequently,
the integrals in (14) and in Z are defined in the region V (r), in which r <

|�zi −�zj |<R, r being the lattice spacing τ in the former case and the par-
ticle diameter d in the latter, whereas R is the radius of the system. V (r),
therefore defines a finite “volume” (V 	πR2 since r 
R) for the system.
We have dropped the regulator ε from the Coulomb potential used in (14)
and in Z, since it is no longer needed in the presence of the natural short
distance cutoff r.

Observe that, in (14) the contribution coming from the soliton oper-
ators at �x and �y corresponds, in the CG language, to the interaction of
the charges of the gas with an external string of electric dipoles orthogo-
nal to it, going from �x to �y, plus the self-interaction of this string, which
consists in the first term in (14).(21)

3. THE SOLITON CORRELATION FUNCTION

In this section, we are going to obtain a representation of the soli-
ton correlator (14), valid for �x �= �y, which will enable us to derive an exact
expression for the asymptotic large distance behavior of 〈µµ†〉 at the KT
point, β2 =8π .

Indeed, for �x �= �y we may use the bipolar coordinates described in
Appendix A, and rewrite (14) as

〈µ(�x)µ†(�y)〉 = Z−1

|�x − �y|
2π

β2

∞∑
n=0

α2n

(n!)2

×
∫ 2π

0,V (r)

∫ +∞

−∞,V (r)

2n∏
i=1

dξidηi

|�x − �y|4n

4[cosh ηi − cos ξi ]2
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× exp
{

β2

8π

2n∑
i �=j=1

λiλj ln
{
|�x − �y|2

[(
sinh ηi

2[cosh ηi − cos ξi ]

− sinh ηj

2[cosh ηj − cos ξj ]

)2

+
(

sin ξi

2[cosh ηi − cos ξi ]
− sin ξj

2[cosh ηj − cos ξj ]

)2]}
+ i

2n∑
i=1

λiξi

}
.

(15)

In this expression, as before, the symbol V (r) expresses the fact that the
integrations must respect the condition that r < |�zi − �zj | < R. In terms of
the ξi ,ηi integrals, this implies the following restriction for the expressions
between round brackets in (15), which we call, respectively αij and βij :

[
α2

ij +β2
ij

]
∈
[

r2

|�x − �y|2 ,
R2

|�x − �y|2
]

|�x−�y|>>r−→
[

r2

4R2
,

1
4

]
. (16)

By inspecting (15), we immediately conclude that the |�x − �y|-fac-
tors decouple from the ξi ,ηi integrals. Elementary combinatorics, taking
into account the neutrality of the gas, shows that this factor will appear
n(n−1) times in the numerator and n2 times in the denominator. Combin-
ing with the 4n contribution coming from the scale factors of the volume
elements, we obtain

〈µ(�x)µ†(�y)〉= Z−1

|�x − �y|
2π

β2

∞∑
n=0

Cn (|�x − �y|) |�x − �y|
(

2− β2
4π

)
2n

. (17)

In this expression the coefficients Cn are given by the summand in (15)
after the |�x − �y|-factors have been removed. In view of the restriction
on the integration region imposed by (16), we see that these coefficients
depend, in general, on |�x − �y|. However, in the large distance regime, where
|�x − �y|� r, we infer from the right part of (16) that the integration region
appearing in the expression of Cn is restricted by constant bounds and,
therefore, do not depend on |�x − �y|. Hence, we conclude that the coeffi-
cients Cn are constant in this limit. This fact is confirmed from an inde-
pendent point of view in Appendix B.

From Eq. (17) we see that for β2 = 8π we have the following exact
expression, valid for the XY-model and the CG of extensive particles,
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〈µ(�x)µ†(�y)〉= K (|�x − �y|)
|�x − �y| 1

4

, (18)

where K (|�x − �y|)=Z−1∑∞
n=0 Cn (|�x − �y|), at β2 =8π .

As we shall prove in Appendix B, K (|�x − �y|) is a real function with
an upper bound equal to one, which is saturated in the large distance

regime, namely, K (|�x − �y|) |�x−�y|>>r−→ 1. This immediately allows us to write

〈µ(�x)µ†(�y)〉 |�x−�y|>>r−→ 1

|�x − �y| 1
4

. (19)

Equation (19) is the well-known result of Kosterlitz and Thouless
for the XY-spin correlation function at the critical temperature TKT =
πJ (remember the relation between the XY-model temperature T and β,
namely, T = 8π2J

β2 ).(2) Notice that for determining the critical exponent
of the static and uniform magnetic susceptibility, only the large distance
behavior of the spin correlator is needed. Expression (19) provides an
exact result for this.

We remark, at this point, that only the leading term in the large dis-
tance behavior of the spin correlator has been obtained when we took the
|�x − �y| >> r limit. In order to get the subleading logarithmic correction
obtained previously,(2,15) namely

〈µ(�x)µ†(�y)〉 |�x−�y|>>r−→ C (ln |�x − �y|) 1
8

|�x − �y| 1
4

, (20)

we should consider the next term in the r
|�x−�y| expansion. According to the

bound and asymptotic value obtained for the function K(x) in Appendix
B, however, we conclude that the constant C in (20) must be C = (ln 2R)−

1
8

such that

K (|�x − �y|) |�x−�y|>>r∼ (ln |�x − �y|) 1
8

(ln 2R)
1
8

|�x−�y|>>r−→ 1. (21)

Finally, observe that the exponent 1/4 comes from the free soliton
correlator, which is the prefactor in (15) and (17). This expresses the well-
known fact that the cosβφ interaction becomes irrelevant at β2 = 8π .
Equivalently, in XY-model language, we would say that the whole contri-
bution to the asymptotic behavior of the correlators comes from the spin-
wave term. For β2 > 8π , we still have the large distance behavior of the
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correlators determined by the free theory (spin-wave term). This fact can
be inferred directly from (17), even though some logarithmic corrections
could be produced by summing in n. For β2 �8π , a careful analysis of
the ultraviolet divergences is required(22) in the local case, where any short
distance regulators must be removed at some point. This, however, has no
effect on our result (17), where short distance singularities are absent due
to the presence of natural regulators.

4. THE VORTEX CORRELATION FUNCTION

The large distance behavior of the two-point correlation function
of the vortex creation operators in the XY-model can also be obtained
exactly within our approach, at the KT point. Here, again, the use of the
correspondence with the SG theory is quite useful. Indeed, from (8) it fol-
lows that, in SG language, this operator is given by

σ(x, τ )= exp
{
i

β

2
φ(x, τ )

}
. (22)

We can obtain a CG representation for 〈σσ †〉 analogous to (15). The only
differences are the prefactor exponent, which is now β2/8π and the last
term, in which ξi is replaced by ηi and i by β2/4π . Following the same
procedure as for the soliton correlation function we obtain, at β2 =8π ,

〈σ(�x)σ †(�y)〉= K ′ (|�x − �y|)
|�x − �y| , (23)

where the function K ′ (|�x − �y|) can be obtained from K (|�x − �y|) through
the same replacements described above. In Appendix B we show that
K ′ (|�x − �y|) presents the same bound and asymptotic limit as K (|�x − �y|).

Thus we have

〈σ(�x)σ †(�y)〉 |�x−�y|>>r−→ 1
|�x − �y| . (24)

5. CONCLUDING REMARKS

An interesting extension of this work, which we are now consider-
ing, is the obtainment of the soliton or XY-vortex four-point correlation
functions at the KT point, using the same methodology. It would also
be interesting to compare the large distance behavior of our series (15)
with the exact solution of the associated free massive fermion theory at
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the Luther–Emery point β2 = 4π .(19,23) This would allow us to determine
the coefficients Cn at this point. Another interesting issue to be explored
would be the large distance behavior of the soliton and vortex correla-
tors in the plasma phase (β2 <8π ), where an exponential decay should be
recovered. Finally, an important case that deserves further investigation is
the local SG theory or CG of point particles for β2 �8π , where a careful
treatment of the short distance singularities must be performed.

APPENDIX A

Here we give details about the bipolar coordinates, which we use for
computing the soliton correlation function (14). Given the position vector
�r in the plane and two points (poles) at �x and �y, we define the coordinates
(ξ, η) as(24)

ξ = arg(�r − �y)−arg(�r − �x),

η = ln
|�r − �x|
|�r − �y| , (A.1)

with 0� ξ �2π and −∞<η<∞. In terms of these coordinates, the posi-
tion vector is given by

�r = |�x − �y|
2[cosh η− cos ξ ]

(sinh η, sin ξ) (A.2)

and the volume element reads

d2z= |�x − �y|2
4[cosh η− cos ξ ]2

dξdη. (A.3)

APPENDIX B

From (15), (17) and (18) we obtain

K (|�x − �y|) = Z−1
∞∑

n=0

α2n

(n!)2

∫
V (r)

n∏
i=1

d2xi

n∏
i=1

d2yi

∏n
i<j

[xi ,xj ]
|�x−�y|4

∏n
i<j

[yi ,yj ]
|�x−�y|4

|�x − �y|4n
∏n

i,j

[xi ,yj ]
|�x−�y|4

× exp
{
i

n∑
i=1

[arg(�xi − �y)−arg(�xi − �x)]

− i

n∑
i=1

[arg(�yi − �y)−arg(�yi − �x)]
}

(B.1)
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In this expression, we went back to usual coordinates and associated �xi

and �yi with the positive and negative charges, respectively. We also intro-
duced the symbols

[xi, yj ]≡|�xi − �yj |4 >r4. (B.2)

Let us first prove that K is real. This can be easily done by taking
the complex conjugate of (B.1) and subsequently performing the change of
variables xi ↔yi .

Considering now the contribution of the phase factors to the integrals
in (B.1) we can establish the following bound:

K (|�x − �y|) � Z−1
∞∑

n=0

α2n

(n!)2

∫
V (r)

n∏
i=1

d2xi

n∏
i=1

d2yi

×
∏n

i<j [xi, xj ]
∏n

i<j [yi, yj ]∏n
i,j [xi, yj ]

. (B.3)

Observe that the |�x − �y|-terms in (B.1) have completely canceled out.
Notice also that the expression given by the sum in (B.3) is nothing but
Z and therefore we immediately infer that K (|�x − �y|) �1, which is the
announced bound for the function in (18).

We now consider the asymptotic behavior of K, for |�x − �y|>>r. The
phases in (B.1) cancel out in the leading order in this limit and we imme-
diately see that the above bound is saturated in the leading asymptotic

regime, namely K (|�x − �y|) |�x−�y|>>r−→ 1.
In order to complete our analysis, let us establish now an upper

bound for Z itself. Using the expression for Z given by the sum in
(B.3), we can infer the following bound for Z, by making the replacement
[xi, yj ]↔ r4 in the n i = j terms in the denominator:

Z �
∞∑

n=0

(
α

r2

)2n

(n!)2

∫
V (r)

n∏
i=1

d2xi

n∏
i=1

d2yi fn(x1, ..., xn;y1, ..., yn), (B.4)

where

fn(x1, ..., xn;y1, ..., yn)=
∏n

i<j [xi, xj ]
∏n

i<j [yi, yj ]∏n
i �=j [xi, yj ]

. (B.5)
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Using the Mean-Value Theorem, we may write the nth integral in (B.4) as

In =V 2nfn, (B.6)

where fn is the average value of fn and V is the “volume” (	πR2) of the
system. Observe that f1 =1, whereas f2 is given by

f2 = [x1, x2][y1, y2]
[x1, y2][x2, y1]

(B.7)

and

f3 =f2(x1, x2;y1, y2) f2(x1, x3;y1, y3) f2(x2, x3;y2, y3). (B.8)

The generalization for higher values of n is straightforward and we have

in general fn = (f2)
n2−n

2 .
Consider now I2. Performing the changes of variables x1 → y1 and

y1 →x1, we readily conclude that

f2 =f −1
2 . (B.9)

This implies that f2 �1 and also that (f2)
N �1.

Since, as we have just seen, fn is in the form (f2)
N we conclude

that fn �1 and, consequently, In �V 2n. Inserting this bound in (B.4), we
obtain (notice that Z is positive)

0<Z �
∞∑

n=0

(
απR2

r2

)2n

(n!)2
= I0

(
2παR2

r2

)
, (B.10)

where I0(x) is a modified Bessel function of the first kind and we have set
V =πR2, since R>>r. From this we see that Z is finite for the XY-model
and the CG of extensive particles (where there is a natural short distance
cutoff r) whenever the volume is finite.

Now let us consider K ′ (|�x − �y|). From the explanations given after
(22), we conclude that

K ′ (|�x − �y|) = Z−1
∞∑

n=0

α2n

(n!)2

∫
V (r)

n∏
i=1

d2xi

n∏
i=1

d2yi

∏n
i<j

[xi ,xj ]
|�x−�y|4

∏n
i<j

[yi ,yj ]
|�x−�y|4

|�x − �y|4n
∏n

i,j

[xi ,yj ]
|�x−�y|4

×
∏n

i [xi, x]1/2∏n
i [yi, y]1/2∏n

i [xi, y]1/2
∏n

i [yi, x]1/2
. (B.11)
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Observe that the last factor in the previous expression tends to one in
the limit |�x − �y| >> r. Hence, we immediately conclude, after the |�x − �y|-
terms are canceled out, that K ′ (|�x − �y|) |�x−�y|>>r−→ 1, thus establishing (24).
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